Actual Sunlight Wikipedia
The apparent sun is the true sun as seen by an observer on Earth. Apparent solar time or true solar time is based on the apparent motion of the actual Sun. It is based on the apparent solar day, the interval between two successive returns of the Sun to the local meridian. Solar time can be crudely measured by a. Widely considered to be one of the bleakest experiences in indie gaming, Actual Sunlight challenges you to confront the life of Evan Winter: An.
Running time119 minutesCountryUnited StatesLanguageEnglishBudget$8 millionBox office$517,788The Report (styled as The Torture Report) is a 2019 American written and directed by and starring,. The plot follows staffer and the as they investigate following the. It covers more than a decade's worth of real-life political intrigue, exploring and compacting. It is partly based on the article 'Rorschach and Awe' by which originally appeared in Vanity Fair.The Report had its world premiere at the on January 26, 2019 and was theatrically released in the United States on November 15, 2019 by, before streaming on beginning November 29, 2019. This section's plot summary may be.
Please by removing unnecessary details and making it more concise. ( December 2019) a Senate staffer, is selected by Senator to lead an investigation into.
Jones' small team of six, which includes April and Julian, begins work in early 2009 reviewing 6 million pages of CIA materials in a windowless office.The narrative shifts back to the of 2001, introducing , Bernadette and Gretchen (Joanne Tucker) at the (CTC), anxiously watching live videos of the attacks. At CIA headquarters a few days later, Tenet reports on his meeting at with President and CTC director,., the CIA's legal counsel, reports that the President had given the CIA powers to 'capture and detain suspected terrorists.' The next year, intelligence psychologists and further elaborate on the CIA's, before revealing their approval of them.Jones meets with agent and learns more about the CIA's interrogation program, particularly regarding.
The is shown, contrasting the FBI's approach with the CIA's enhanced interrogation techniques. Bernadette is present as a witness.
Soufan, who speaks both English and Arabic, says they kept Zubaydah alive and gathered crucial intelligence in the days before the CIA took over the interrogations. The CIA disagreed on techniques and results.Jones briefs Senator Feinstein in her office, providing the evidence from the CIA's own records proving that the CIA knew Zubaydah was not a high-ranking member of al-Qaeda, as they had falsely reported to the Department of Justice (DOJ). After the CIA told President Bush that Zubaydah was a key player, they received authorization in an August 2002 CIA memo to torture Zubaydah, making him the first detainee to be tortured.Raymond Nathan , a physician assistant with the Office of Medical Services, secretly meets with Jones and tells him that he and others had wanted to leave the service because of the use of torture. He witnessed the waterboarding of Zubaydah, who almost drowned and who lost consciousness during the procedure. Nathan tells Jones that they were told by Director to not put their complaints in writing.Jones and April uncover the story of who died in his cell from in 2002. Jones meets with Feinstein and her staffer Marcy Morris to tell them about the Inspector General's report of the incident.
The CIA had undertaken its own investigation into the death. Jones deduces that the had been told to not inform the President about Office of Legal Counsel staffer 's 2003 memo containing narrower redefinitions of torture and enhanced interrogation techniques. President Bush only learned about this four years later in April 2006.Jones finds the, an internal CIA review of the EIT practices prepared in 2009 but never shared, among the files provided by the CIA. While watching TV at a bar after work, April, Julian and Jones become discouraged as they watch a broadcast claiming that torture had yielded good intelligence and prevented terrorist attacks. Jones stays up all night to disprove the media's claims; the CIA's own data show it already had crucial information from (KSM) (Ratnesh Dubey) before subjecting him to torture.In another flashback to March 2003, Mitchell and Jessen waterboard Mohammad. Mitchell complains that when tortured, Muhammad lies to avoid more torture. Bernadette, who is witnessing from another room, admits they have a problem.
Gretchen decides that the torture will continue.April announces that she will be taking a new job, discouraged by the lack of support for their research and her concern that the report might never be published. She says that the CIA knew in 1978 that torture did not work but they did it anyway.In another flashback, in response to the April 21, 2004 address to the United Nations by President Bush, in which he denounced the use of torture, Tenet, Bernadette, Mitchell, Jessen, Thomas Eastman, Jose Rodriguez, and John Rizzo meet to discuss how they would respond., the OLC's new head, had repudiated and withdrawn the. Mitchell gives an impassioned speech in defense of his methods and Rodriguez has the program re-certified.Jones seeks legal advice to challenge charges laid against him that he has 'stolen' the CIA's Panetta Review files from their computer system. His lawyer, Cyrus Clifford advises him that he does not have a legal problem, but a 'sunlight' or problem. Jones meets with a reporter and suggests he look into the CIA break-in and theft at the Senate Intelligence Committee's closed facilities. Jones is careful to provide the reporter with no details.
as. as. as.
as. as Raymond Nathan. as. as Thomas Eastman. as Bernadette. as April. Lucas Dixon as Julian.
as. as. as. as Marcy Morris. as. as. as Cyrus Clifford.
as. Joanne Tucker as Gretchen. Ian Blackman as. Zuhdi Boueri as. as. Ratnesh Dubey as.
as. as Candace Ames. James Hindman as Inspector General Buckley.
Austin Michael Young as Agent Miller. as. as Scrubbed CIA Officer. as Yoked up CIA Officer.
as New York Times ReporterProduction The project was announced in April 2018 with directing and writing, and, and signed on to star.' S asked Burns on his motivation for making the controversial 2014 report on CIA torture into a movie.
Both Burns' parents are psychologists and he found it 'appalling' to learn from the Senate Intelligence Committee report, that 'people had figured out a way to weaponize psychology', a profession that 'exists to help people'. Burns said that he and the film's producer Steven Soderbergh, felt it reflected well on the United States that the government allowed the report to be published.
Soderbergh said that he did not know 'that there's another country, other than maybe Canada or the U.K.' , that 'would have even allowed this kind of investigation.' The film began production on April 16, 2018 in with, and added to the cast the following month.
In June 2018, joined the cast. Originally set with a 50-day shooting schedule and $18 million budget, the allotted shooting days were cut to 26 and the final budget to $8 million. Release The film had its world premiere at the on January 26, 2019.
Shortly after, acquired distribution rights to the film. In October 2019, it appeared as a spotlight film at the. It was scheduled to be theatrically released in the United States on November 15, 2019, before being released on two weeks later on November 29.
It was previously scheduled for respective September 27 and October 11 releases. Awards The Report received the Heroes Award at the Heroes event in Los Angeles on 8th February 2020. Reception Box office Unlike its previous titles, Amazon did not publicly disclose theatrical gross of The Report, leading to estimate it grossed around $150,000 from 84 theaters in its opening weekend. The site wrote that 'the response, so far as we can determine, are under the usual Amazon performance.' Playing in just 60 theaters the following weekend, the film made an estimated $75,000.
Critical response On, the film holds an approval rating of 81% based on 221 reviews, with an average rating of 7.18/10. The website's critical consensus reads, ' The Report draws on a dark chapter in American history to offer a sober, gripping account of one public servant's crusade for accountability.' On, the film has a score of 66 out of 100, based on 33 critics, indicating 'generally favorable reviews'.In August 2019, announced that it will award the 2019 Sidney Lumet Award for Integrity in Entertainment to The Report at the organization's annual award dinner on October 28 in New York City.
^ Miller, Julie (September 9, 2019). Retrieved November 30, 2019. ^ Brueggemann, Tom (November 24, 2019). Retrieved November 24, 2019. Retrieved January 29, 2020. Sims, David (January 29, 2019).
The Atlantic. Retrieved August 29, 2019. Eban, Katherine. Vanity Fair. Felperin, Leslie (January 27, 2019).
The Hollywood Reporter. Isikoff, Michael (April 24, 2009). Retrieved January 27, 2012. Johnston, David (September 10, 2006). New York Times. Retrieved January 27, 2012.
(PDF). Department of Justice, Office of the Inspector General. Retrieved January 27, 2012. Eggen, Dan; Pincus, Walter (December 18, 2007). Washington Post.
Retrieved January 27, 2012. Soufan, Ali (April 22, 2009). The New York Times. Retrieved May 10, 2013.
The New York Times. April 21, 2004. Retrieved November 30, 2019. 'A Sunlight Problem', The Report, Behind the Scenes of the Report, and, 2019.
'Confirmation hearing', The Report, Behind the Scenes of the Report, and, 2019. 'Crossing a Line', The Report, Behind the Scenes of the Report, and, 2019. N'Duka, Amanda (April 4, 2018).
McNary, Dave (April 4, 2018). Retrieved December 1, 2018. ^, November 29, 2019, retrieved November 29, 2019.
(PDF). United States Senate Select Committee on Intelligence.
(PDF) from the original on December 9, 2014. Retrieved November 29, 2019. Declassification Revisions December 3, 2014 This article incorporates text from this source, which is in the. Perez, Rodrigo (April 12, 2018).
The Playlist. Retrieved April 15, 2018. Deadline Hollywood. N'Duka, Amanda (June 18, 2018). Deadline Hollywood. Faery legends of avalon dragon. Debruge, Peter (November 28, 2018).
Retrieved November 28, 2018. Lang, Brent; Donnelly, Matt (January 28, 2019).
Retrieved January 28, 2019. Retrieved September 18, 2019.
D'Alessandro, Anthony (July 26, 2019). Retrieved July 26, 2019.
D'Alessandro, Anthony (June 13, 2019). Retrieved June 13, 2019.
Cinema for Peace @CinemaForPeace (February 8, 2020). Retrieved February 10, 2020 – via. Brueggemann, Tom (November 17, 2019).
Retrieved November 17, 2019. Retrieved March 14, 2020. Retrieved November 23, 2019. August 29, 2019. Retrieved November 30, 2019.External links.
on. at. at.
The Sun, as seen from the point of viewThe is the amount of power that the Sun deposits per unit area that is directly exposed to sunlight. The solar constant is equal to approximately 1,368 W/m 2 (watts per square meter) at a distance of one (AU) from the Sun (that is, on or near Earth). Sunlight on the surface of Earth is by, so that less power arrives at the surface (closer to 1,000 W/m 2) in clear conditions when the Sun is near the. Sunlight at the top of Earth's atmosphere is composed (by total energy) of about 50% infrared light, 40% visible light, and 10% ultraviolet light. The atmosphere in particular filters out over 70% of solar ultraviolet, especially at the shorter wavelengths. Solar ionizes Earth's dayside upper atmosphere, creating the electrically conducting.The Sun's color is white, with a color-space index near (0.3, 0.3), when viewed from space or when the Sun is high in the sky. When measuring all the emitted, the Sun is emitting more photons in the green portion of the spectrum than any other.
When the Sun is low in the sky, renders the Sun yellow, red, orange, or magenta. Despite its typical whiteness, most people mentally picture the Sun as yellow; the reasons for this are the subject of debate.The Sun is a star, with G2 indicating its of approximately 5,778 K (5,505 °C, 9,941 °F), and V that it, like most stars, is a star.
The average of the Sun is about 1.88, but as viewed through Earth's atmosphere, this is lowered to about 1.44 Gcd/m 2. However, the luminance is not constant across the disk of the Sun.Composition. See also:The Sun is composed primarily of the. At this time in the Sun's life, they account for 74.9% and 23.8% of the mass of the Sun in the photosphere, respectively. All heavier elements, called in astronomy, account for less than 2% of the mass, with oxygen (roughly 1% of the Sun's mass), carbon (0.3%), neon (0.2%), and iron (0.2%) being the most abundant.The Sun's original chemical composition was inherited from the out of which it formed. Originally it would have contained about 71.1% hydrogen, 27.4% helium, and 1.5% heavier elements. The hydrogen and most of the helium in the Sun would have been produced by in the first 20 minutes of the universe, and the heavier elements were before the Sun was formed, and spread into the interstellar medium during the and by events such as.Since the Sun formed, the main fusion process has involved fusing hydrogen into helium.
Over the past 4.6 billion years, the amount of helium and its location within the Sun has gradually changed. Within the core, the proportion of helium has increased from about 24% to about 60% due to fusion, and some of the helium and heavy elements have settled from the photosphere towards the center of the Sun because of. The proportions of metals (heavier elements) is unchanged. Outward from the Sun's core by radiation rather than by convection (see below), so the fusion products are not lifted outward by heat; they remain in the core and gradually an inner core of helium has begun to form that cannot be fused because presently the Sun's core is not hot or dense enough to fuse helium. In the current photosphere the helium fraction is reduced, and the is only 84% of what it was in the phase (before nuclear fusion in the core started). In the future, helium will continue to accumulate in the core, and in about 5 billion years this gradual build-up will eventually cause the Sun to exit the and become a.The chemical composition of the photosphere is normally considered representative of the composition of the primordial Solar System. The solar heavy-element abundances described above are typically measured both using of the Sun's photosphere and by measuring abundances in that have never been heated to melting temperatures.
These meteorites are thought to retain the composition of the protostellar Sun and are thus not affected by settling of heavy elements. The two methods generally agree well. Singly ionized iron-group elementsIn the 1970s, much research focused on the abundances of elements in the Sun. Although significant research was done, until 1978 it was difficult to determine the abundances of some iron-group elements (e.g. And ) via because of their.The first largely complete set of of singly ionized iron-group elements were made available in the 1960s, and these were subsequently improved. In 1978, the abundances of singly ionized elements of the iron group were derived. Isotopic compositionVarious authors have considered the existence of a gradient in the compositions of solar and planetary, e.g.
Correlations between isotopic compositions of and in the Sun and on the planets.Prior to 1983, it was thought that the whole Sun has the same composition as the solar atmosphere. In 1983, it was claimed that it was in the Sun itself that caused the isotopic-composition relationship between the planetary and solar-wind-implanted noble gases. Structure and fusion. Pressure profile in the SunThe structure of the Sun contains the following layers:. Core – the innermost 20–25% of the Sun's radius, where temperature (energies) and pressure are sufficient for to occur. Hydrogen fuses into helium (which cannot currently be fused at this point in the Sun's life). The fusion process releases energy, and the helium gradually accumulates to form an inner core of helium within the core itself.
Radiative zone – cannot occur until much nearer the surface of the Sun. Main article:The of the Sun extends from the center to about 20–25% of the solar radius.
It has a density of up to 150 g/cm 3 (about 150 times the density of water) and a temperature of close to 15.7 million (K). By contrast, the Sun's surface temperature is approximately 5,800 K. Recent analysis of mission data favors a faster rotation rate in the core than in the radiative zone above. Through most of the Sun's life, energy has been produced by in the core region through a series of called the; this process converts into. Only 0.8% of the energy generated in the Sun comes from another sequence of fusion reactions called the, though this proportion is expected to increase as the Sun becomes older.The core is the only region in the Sun that produces an appreciable amount of through fusion; 99% of the power is generated within 24% of the Sun's radius, and by 30% of the radius, fusion has stopped nearly entirely. The remainder of the Sun is heated by this energy as it is transferred outwards through many successive layers, finally to the solar photosphere where it escapes into space through radiation (photons) or advection (massive particles).The occurs around 9.2 ×10 37 times each second in the core, converting about 3.7 ×10 38 protons into (helium nuclei) every second (out of a total of 8.9 ×10 56 free protons in the Sun), or about 6.2 ×10 11 kg/s.
Fusing four free (hydrogen nuclei) into a single (helium nucleus) releases around 0.7% of the fused mass as energy, so the Sun releases energy at the mass–energy conversion rate of 4.26 million metric tons per second (which requires 600 metric megatons of hydrogen ), for 384.6 ( 3.846 ×10 26 W), or 9.192 ×10 10 of per second. The large power output of the Sun is mainly due to the huge size and density of its core (compared to Earth and objects on Earth), with only a fairly small amount of power being generated per. Main article:From the core out to about 0.7 solar radii, is the primary means of energy transfer. The temperature drops from approximately 7 million to 2 million kelvins with increasing distance from the core. This is less than the value of the and hence cannot drive convection, which explains why the transfer of energy through this zone is by instead of thermal. Of and emit, which travel only a brief distance before being reabsorbed by other ions. The density drops a hundredfold (from 20 g/cm 3 to 0.2 g/cm 3) from 0.25 solar radii to the 0.7 radii, the top of the radiative zone.
Main article:The Sun's convection zone extends from 0.7 solar radii (500,000 km) to near the surface. In this layer, the solar plasma is not dense enough or hot enough to transfer the heat energy of the interior outward via radiation. Instead, the density of the plasma is low enough to allow convective currents to develop and move the Sun's energy outward towards its surface. Material heated at the tachocline picks up heat and expands, thereby reducing its density and allowing it to rise.
As a result, an orderly motion of the mass develops into that carry the majority of the heat outward to the Sun's photosphere above. Once the material diffusively and radiatively cools just beneath the photospheric surface, its density increases, and it sinks to the base of the convection zone, where it again picks up heat from the top of the radiative zone and the convective cycle continues. At the photosphere, the temperature has dropped to 5,700 K and the density to only 0.2 g/m 3 (about 1/6,000 the density of air at sea level).The thermal columns of the convection zone form an imprint on the surface of the Sun giving it a granular appearance called the at the smallest scale and at larger scales.
Turbulent convection in this outer part of the solar interior sustains 'small-scale' dynamo action over the near-surface volume of the Sun. The Sun's thermal columns are and take the shape of hexagonal prisms. High-resolution image of the Sun's surface taken by the (DKIST)The visible surface of the Sun, the photosphere, is the layer below which the Sun becomes to visible light. Photons produced in this layer escape the Sun through the transparent solar atmosphere above it and become solar radiation, sunlight. The change in opacity is due to the decreasing amount of, which absorb visible light easily. Conversely, the visible light we see is produced as electrons react with atoms to produce H − ions.The photosphere is tens to hundreds of kilometers thick, and is slightly less opaque than air on Earth. Because the upper part of the photosphere is cooler than the lower part, an image of the Sun appears brighter in the center than on the edge or limb of the solar disk, in a phenomenon known as.
The spectrum of sunlight has approximately the spectrum of a radiating at 5,777, interspersed with atomic from the tenuous layers above the photosphere. The photosphere has a particle density of 10 23 m −3 (about 0.37% of the particle number per volume of at sea level). The photosphere is not fully ionized—the extent of ionization is about 3%, leaving almost all of the hydrogen in atomic form.During early studies of the of the photosphere, some absorption lines were found that did not correspond to any then known on Earth.
In 1868, hypothesized that these absorption lines were caused by a new element that he dubbed, after the Greek Sun god. Twenty-five years later, helium was isolated on Earth. During a total, the can be seen with the naked eye, during the brief period of totality.During a total, when the disk of the Sun is covered by that of the Moon, parts of the Sun's surrounding atmosphere can be seen. It is composed of four distinct parts: the, the, the and the.The coolest layer of the Sun is a temperature minimum region extending to about 500 km above the photosphere, and has a temperature of about 4,100. This part of the Sun is cool enough to allow the existence of simple molecules such as and water, which can be detected via their absorption spectra.The chromosphere, transition region, and corona are much hotter than the surface of the Sun. The reason is not well understood, but evidence suggests that may have enough energy to heat the corona.Above the temperature minimum layer is a layer about 2,000 km thick, dominated by a spectrum of emission and absorption lines.
It is called the chromosphere from the Greek root chroma, meaning color, because the chromosphere is visible as a colored flash at the beginning and end of total. The temperature of the chromosphere increases gradually with altitude, ranging up to around 20,000 K near the top. In the upper part of the chromosphere becomes partially. See also:High-energy photons initially released with fusion reactions in the core are almost immediately absorbed by the solar plasma of the radiative zone, usually after traveling only a few millimeters. Re-emission happens in a random direction and usually at a slightly lower energy. With this sequence of emissions and absorptions, it takes a long time for radiation to reach the Sun's surface.
Estimates of the photon travel time range between 10,000 and 170,000 years. In contrast, it takes only 2.3 seconds for the, which account for about 2% of the total energy production of the Sun, to reach the surface.
Because energy transport in the Sun is a process that involves photons in thermodynamic equilibrium with matter, the time scale of energy transport in the Sun is longer, on the order of 30,000,000 years. This is the time it would take the Sun to return to a stable state, if the rate of energy generation in its core were suddenly changed.Neutrinos are also released by the fusion reactions in the core, but, unlike photons, they rarely interact with matter, so almost all are able to escape the Sun immediately. For many years measurements of the number of neutrinos produced in the Sun were by a factor of 3. This discrepancy was resolved in 2001 through the discovery of the effects of: the Sun emits the number of neutrinos predicted by the, but neutrino detectors were missing 2⁄ 3 of them because the neutrinos had changed by the time they were detected. Magnetic activity Magnetic field. The extends to the outer reaches of the Solar System, and results from the influence of the Sun's rotating magnetic field on the in the.The Sun has a that varies across the surface of the Sun. Its polar field is 1–2 (0.0001–0.0002 ), whereas the field is typically 3,000 gauss (0.3 T) in features on the Sun called and 10–100 gauss (0.001–0.01 T) in.The magnetic field also varies in time and location.
The quasi-periodic 11-year is the most prominent variation in which the number and size of sunspots waxes and wanes.Sunspots are visible as dark patches on the Sun's, and correspond to concentrations of magnetic field where the of heat is inhibited from the solar interior to the surface. As a result, sunspots are slightly cooler than the surrounding photosphere, so they appear dark. At a typical, few sunspots are visible, and occasionally none can be seen at all. Those that do appear are at high solar latitudes.
As the solar cycle progresses towards its, sunspots tend to form closer to the solar equator, a phenomenon known as. The largest sunspots can be tens of thousands of kilometers across.An 11-year sunspot cycle is half of a 22-year –Leighton cycle, which corresponds to an oscillatory exchange of energy between solar magnetic fields. At, the external poloidal dipolar magnetic field is near its dynamo-cycle minimum strength, but an internal quadrupolar field, generated through differential rotation within the tachocline, is near its maximum strength. At this point in the dynamo cycle, buoyant upwelling within the convective zone forces emergence of toroidal magnetic field through the photosphere, giving rise to pairs of sunspots, roughly aligned east–west and having footprints with opposite magnetic polarities. The magnetic polarity of sunspot pairs alternates every solar cycle, a phenomenon known as the Hale cycle.During the solar cycle's declining phase, energy shifts from the internal toroidal magnetic field to the external poloidal field, and sunspots diminish in number and size.
At, the toroidal field is, correspondingly, at minimum strength, sunspots are relatively rare, and the poloidal field is at its maximum strength. With the rise of the next 11-year sunspot cycle, differential rotation shifts magnetic energy back from the poloidal to the toroidal field, but with a polarity that is opposite to the previous cycle. The process carries on continuously, and in an idealized, simplified scenario, each 11-year sunspot cycle corresponds to a change, then, in the overall polarity of the Sun's large-scale magnetic field.The solar magnetic field extends well beyond the Sun itself. The electrically conducting solar wind plasma carries the Sun's magnetic field into space, forming what is called the. In an approximation known as ideal, plasma particles only move along the magnetic field lines. As a result, the outward-flowing solar wind stretches the interplanetary magnetic field outward, forcing it into a roughly radial structure.
For a simple dipolar solar magnetic field, with opposite hemispherical polarities on either side of the solar magnetic equator, a thin is formed in the solar wind. At great distances, the rotation of the Sun twists the dipolar magnetic field and corresponding current sheet into an structure called the. The interplanetary magnetic field is much stronger than the dipole component of the solar magnetic field. The Sun's dipole magnetic field of 50–400 (at the photosphere) reduces with the inverse-cube of the distance to about 0.1 nT at the distance of Earth.
However, according to spacecraft observations the interplanetary field at Earth's location is around 5 nT, about a hundred times greater. The difference is due to magnetic fields generated by electrical currents in the plasma surrounding the Sun.Variation in activity. Measurements from 2005 of solar cycle variation during the last 30 yearsThe Sun's magnetic field leads to many effects that are collectively called. And tend to occur at sunspot groups. Slowly changing high-speed streams of are emitted from at the photospheric surface.
Both coronal-mass ejections and high-speed streams of solar wind carry plasma and outward into the Solar System. The effects of solar activity on Earth include at moderate to high latitudes and the disruption of radio communications. Solar activity is thought to have played a large role in the.With solar-cycle modulation of sunspot number comes a corresponding modulation of conditions, including those surrounding Earth where technological systems can be affected.In December 2019, a new type of solar magnetic explosion was observed, known as. Previously, in a process called, it was observed that the solar magnetic field lines diverge explosively and then converge again instantaneously. Forced Magnetic Reconnection was similar, but it was triggered by an explosion in the corona.
Long-term changeLong-term secular change in sunspot number is thought, by some scientists, to be correlated with long-term change in solar irradiance, which, in turn, might influence Earth's long-term climate.For example, in the 17th century, the solar cycle appeared to have stopped entirely for several decades; few sunspots were observed during a period known as the. This coincided in time with the era of the, when Europe experienced unusually cold temperatures.
Earlier extended minima have been discovered through analysis of and appear to have coincided with lower-than-average global temperatures.A recent theory claims that there are magnetic instabilities in the core of the Sun that cause fluctuations with periods of either 41,000 or 100,000 years. These could provide a better explanation of the than the. Main articles: andThe Sun today is roughly halfway through the most stable part of its life. It has not changed dramatically for over four billion years, and will remain fairly stable for more than five billion more. However, after hydrogen fusion in its core has stopped, the Sun will undergo dramatic changes, both internally and externally.FormationThe Sun formed about 4.6 billion years ago from the collapse of part of a giant that consisted mostly of hydrogen and helium and that probably gave birth to many other stars.
This age is estimated using of and through. The result is consistent with the of the oldest Solar System material, at 4.567 billion years ago.
Studies of ancient reveal traces of stable daughter nuclei of short-lived isotopes, such as, that form only in exploding, short-lived stars. This indicates that one or more supernovae must have occurred near the location where the Sun formed. A from a nearby supernova would have triggered the formation of the Sun by compressing the matter within the molecular cloud and causing certain regions to collapse under their own gravity. As one fragment of the cloud collapsed it also began to rotate because of and heat up with the increasing pressure. Much of the mass became concentrated in the center, whereas the rest flattened out into a disk that would become the planets and other Solar System bodies. Gravity and pressure within the core of the cloud generated a lot of heat as it accreted more matter from the surrounding disk, eventually triggering.and are hypothesized stellar siblings of the Sun, having formed in the same molecular cloud.Main sequence.
Evolution of the Sun's, and compared to the present Sun. After Ribas (2010)The Sun is about halfway through its stage, during which nuclear fusion reactions in its core fuse hydrogen into helium.
Each second, more than four million of matter are converted into energy within the Sun's core, producing. At this rate, the Sun has so far converted around 100 times the mass of Earth into energy, about 0.03% of the total mass of the Sun. The Sun will spend a total of approximately 10 years as a main-sequence star.
The Sun is gradually becoming hotter during its time on the main sequence, because the helium atoms in the core occupy less volume than the that were fused. The core is therefore shrinking, allowing the outer layers of the Sun to move closer to the center and experience a stronger gravitational force, according to the. This stronger force increases the pressure on the core, which is resisted by a gradual increase in the rate at which fusion occurs. This process speeds up as the core gradually becomes denser. It is estimated that the Sun has become 30% brighter in the last 4.5 billion years. At present, it is increasing in brightness by about 1% every 100 million years. After core hydrogen exhaustion.
The size of the current Sun (now in the ) compared to its estimated size during its red-giant phase in the futureThe Sun does not have enough mass to explode as a. Instead it will exit the in approximately 5 billion years and start to turn into a. As a red giant, the Sun will grow so large that it will engulf Mercury, Venus, and probably Earth.Even before it becomes a red giant, the luminosity of the Sun will have nearly doubled, and Earth will receive as much sunlight as Venus receives today. Once the core hydrogen is exhausted in 5.4 billion years, the Sun will expand into a phase and slowly double in size over about half a billion years. It will then expand more rapidly over about half a billion years until it is over two hundred times larger than today and a couple of thousand times more luminous. This then starts the phase where the Sun will spend around a billion years and lose around a third of its mass. Evolution of a Sun-like star.
The track of a one solar mass star on the is shown from the main sequence to the post-asymptotic-giant-branch stage.After the red-giant branch the Sun has approximately 120 million years of active life left, but much happens. First, the core, full of helium ignites violently in the, where it is estimated that 6% of the core, itself 40% of the Sun's mass, will be converted into carbon within a matter of minutes through the. The Sun then shrinks to around 10 times its current size and 50 times the luminosity, with a temperature a little lower than today. It will then have reached the or, but a star of the Sun's mass does not evolve blueward along the horizontal branch. Instead, it just becomes moderately larger and more luminous over about 100 million years as it continues to react helium in the core.When the helium is exhausted, the Sun will repeat the expansion it followed when the hydrogen in the core was exhausted, except that this time it all happens faster, and the Sun becomes larger and more luminous.
This is the phase, and the Sun is alternately reacting hydrogen in a shell or helium in a deeper shell. After about 20 million years on the early asymptotic giant branch, the Sun becomes increasingly unstable, with rapid mass loss and that increase the size and luminosity for a few hundred years every 100,000 years or so. The thermal pulses become larger each time, with the later pulses pushing the luminosity to as much as 5,000 times the current level and the radius to over 1 AU.
According to a 2008 model, Earth's orbit is shrinking due to (and, eventually, drag from the lower ), so that it will be engulfed by the Sun near the tip of the red giant branch phase, 3.8 and 1 million years after Mercury and Venus have respectively had the same fate. Models vary depending on the rate and timing of mass loss. Models that have higher mass loss on the red-giant branch produce smaller, less luminous stars at the tip of the asymptotic giant branch, perhaps only 2,000 times the luminosity and less than 200 times the radius. For the Sun, four thermal pulses are predicted before it completely loses its outer envelope and starts to make a. By the end of that phase—lasting approximately 500,000 years—the Sun will only have about half of its current mass.The post-asymptotic-giant-branch evolution is even faster. The luminosity stays approximately constant as the temperature increases, with the ejected half of the Sun's mass becoming ionized into a as the exposed core reaches 30,000 K. The final naked core, a, will have a temperature of over 100,000 K, and contain an estimated 54.05% of the Sun's present day mass.
The planetary nebula will disperse in about 10,000 years, but the white dwarf will survive for trillions of years before fading to a hypothetical. Motion and location. Apparent motion of the Solar System with respect to the Sun - it is actually the Sun that moves.The Sun is moved by the gravitational pull of the planets. One can think of the of the Solar System as being stationary (or as moving in a steady motion around the galaxy). The centre of the sun is always within 2.2 solar radii of the barycentre. This motion of the Sun is mainly due to Jupiter, Saturn, Uranus, and Neptune.
For some periods of several decades, the motion is rather regular, forming a pattern, whereas between these periods it appears more chaotic. After 179 years (nine times the of and ) the pattern more or less repeats, but rotated by about 24°. The orbits of the inner planets, including of the Earth, are similarly displaced by the same graviational forces, so the movement of the Sun has little effect on the relative positions of the Earth and the Sun or on solar irradiance on the Earth as a function of time.
Theoretical problems. Main article:Theoretical models of the Sun's development suggest that 3.8 to 2.5 billion years ago, during the, the Sun was only about 75% as bright as it is today. Such a weak star would not have been able to sustain liquid water on Earth's surface, and thus life should not have been able to develop. However, the geological record demonstrates that Earth has remained at a fairly constant temperature throughout its history, and that the young Earth was somewhat warmer than it is today. One theory among scientists is that the atmosphere of the young Earth contained much larger quantities of (such as, ) than are present today, which trapped enough heat to compensate for the smaller amount of reaching it.However, examination of Archaean sediments appears inconsistent with the hypothesis of high greenhouse concentrations. Instead, the moderate temperature range may be explained by a lower surface brought about by less continental area and the 'lack of biologically induced cloud condensation nuclei'.
This would have led to increased absorption of solar energy, thereby compensating for the lower solar output. Observational historyThe enormous effect of the Sun on Earth has been recognized since, and the Sun has been as a.Early understanding. See also:The Sun has been an object of veneration in many cultures throughout human history. Humanity's most fundamental understanding of the Sun is as the luminous disk in the, whose presence above the creates day and whose absence causes night. In many prehistoric and ancient cultures, the Sun was thought to be a or other entity. Was central to civilizations such as the, the of South America and the of what is now.
In religions such as, the Sun is still considered a god. Many ancient monuments were constructed with solar phenomena in mind; for example, stone accurately mark the summer or winter (some of the most prominent megaliths are located in,;, and at, );, a prehistoric human-built mount in, was designed to detect the winter solstice; the pyramid of at in is designed to cast shadows in the shape of serpents climbing the at the vernal and autumnal.The Egyptians portrayed the god as being carried across the sky in a solar barque, accompanied by lesser gods, and to the Greeks, he was, carried by a chariot drawn by fiery horses. From the reign of in the the Sun's birthday was a holiday celebrated as (literally 'Unconquered Sun') soon after the winter solstice, which may have been an antecedent to Christmas. Regarding the, the Sun appears from Earth to revolve once a year along the through the, and so Greek astronomers categorized it as one of the seven (Greek planetes, 'wanderer'); the naming of the after the seven planets dates to the. Development of scientific understandingIn the early first millennium BC, observed that the Sun's motion along the is not uniform, though they did not know why; it is today known that this is due to the movement of in an around the Sun, with Earth moving faster when it is nearer to the Sun at and moving slower when it is farther away at.One of the first people to offer a scientific or philosophical explanation for the Sun was the. He reasoned that it was not the of, but instead a giant flaming ball of metal even larger than the land of the and that the reflected the light of the Sun.
For teaching this, he was imprisoned by the authorities and, though he was later released through the intervention of. Estimated the distance between Earth and the Sun in the 3rd century BC as 'of stadia 400 and 80000', the translation of which is ambiguous, implying either 4,080,000 (755,000 km) or 804,000,000 stadia (148 to 153 million kilometers or 0.99 to 1.02 AU); the latter value is correct to within a few percent. In the 1st century AD, estimated the distance as 1,210 times, approximately 7.71 million kilometers (0.0515 AU).The theory that the Sun is the center around which the planets orbit was first proposed by the ancient Greek in the 3rd century BC, and later adopted by (see ). This view was developed in a more detailed of a heliocentric system in the 16th century by.Observations of sunspots were recorded during the (206 BC–AD 220) by, who maintained records of these observations for centuries. Also provided a description of sunspots in the 12th century. The invention of the in the early 17th century permitted detailed observations of by, and other astronomers.
Galileo posited that sunspots were on the surface of the Sun rather than small objects passing between Earth and the Sun.include 's discovery that the direction of the Sun's (the place in the Sun's orbit against the fixed stars where it seems to be moving slowest) is changing. (In modern heliocentric terms, this is caused by a gradual motion of the aphelion of the Earth's orbit). Observed more than 10,000 entries for the Sun's position for many years using a large.
Sol, the Sun, from a 1550 edition of 's Liber astronomiae.From an observation of a in 1032, the Persian astronomer and polymath concluded that Venus is closer to Earth than the Sun. In 1672 and determined the distance to and were thereby able to calculate the distance to the Sun.In 1666, observed the Sun's light using a, and showed that it is made up of light of many colors. In 1800, discovered radiation beyond the red part of the solar spectrum. The 19th century saw advancement in spectroscopic studies of the Sun; recorded more than 600 in the spectrum, the strongest of which are still often referred to as. In the early years of the modern scientific era, the source of the Sun's energy was a significant puzzle.
Suggested that the Sun is a gradually cooling liquid body that is radiating an internal store of heat. Kelvin and then proposed a mechanism to explain the energy output, but the resulting age estimate was only 20 million years, well short of the time span of at least 300 million years suggested by some geological discoveries of that time. In 1890, who discovered helium in the solar spectrum, proposed a meteoritic hypothesis for the formation and evolution of the Sun.Not until 1904 was a documented solution offered. Suggested that the Sun's output could be maintained by an internal source of heat, and suggested as the source.
However, it would be who would provide the essential clue to the source of the Sun's energy output with his relation E = mc 2. In 1920, Sir proposed that the pressures and temperatures at the core of the Sun could produce a nuclear fusion reaction that merged hydrogen (protons) into helium nuclei, resulting in a production of energy from the net change in mass. The preponderance of hydrogen in the Sun was confirmed in 1925 by using the theory developed. The theoretical concept of fusion was developed in the 1930s by the astrophysicists. Hans Bethe calculated the details of the two main energy-producing nuclear reactions that power the Sun. In 1957, and showed that most of the elements in the universe have been by nuclear reactions inside stars, some like the Sun. Solar space missions.
A lunar transit of the Sun captured during calibration of STEREO B's ultraviolet imaging camerasThe first satellites designed for long term observation of the Sun from interplanetary space were 's 6, 7, 8 and 9, which were launched between 1959 and 1968. These probes orbited the Sun at a distance similar to that of Earth, and made the first detailed measurements of the solar wind and the solar magnetic field. Operated for a particularly long time, transmitting data until May 1983.In the 1970s, two spacecraft and the provided scientists with significant new data on solar wind and the solar corona. The Helios 1 and 2 probes were U.S.–German collaborations that studied the solar wind from an orbit carrying the spacecraft inside 's orbit at. The Skylab space station, launched by NASA in 1973, included a solar module called the Apollo Telescope Mount that was operated by astronauts resident on the station. Skylab made the first time-resolved observations of the solar transition region and of ultraviolet emissions from the solar corona. Discoveries included the first observations of, then called 'coronal transients', and of, now known to be intimately associated with the.
Coronal hole on the Sun forms a (22 December 2017)In 1980, the was launched. This spacecraft was designed to observe, and radiation from during a time of high solar activity. Just a few months after launch, however, an electronics failure caused the probe to go into standby mode, and it spent the next three years in this inactive state. In 1984 mission retrieved the satellite and repaired its electronics before re-releasing it into orbit.
The Solar Maximum Mission subsequently acquired thousands of images of the solar corona before Earth's atmosphere in June 1989.Launched in 1991, Japan's ( Sunbeam) satellite observed solar flares at X-ray wavelengths. Mission data allowed scientists to identify several different types of flares, and demonstrated that the corona away from regions of peak activity was much more dynamic and active than had previously been supposed. Yohkoh observed an entire solar cycle but went into standby mode when an in 2001 caused it to lose its lock on the Sun. It was destroyed by atmospheric re-entry in 2005.One of the most important solar missions to date has been the, jointly built by the and and launched on 2 December 1995. Originally intended to serve a two-year mission, a mission extension through 2012 was approved in October 2009.
It has proven so useful that a follow-on mission, the (SDO), was launched in February 2010. Situated at the between Earth and the Sun (at which the gravitational pull from both is equal), SOHO has provided a constant view of the Sun at many wavelengths since its launch. Besides its direct solar observation, SOHO has enabled the discovery of a large number of, mostly tiny that incinerate as they pass the Sun. A solar prominence erupts in August 2012, as captured by SDOAll these satellites have observed the Sun from the plane of the ecliptic, and so have only observed its equatorial regions in detail.
The was launched in 1990 to study the Sun's polar regions. It first traveled to, to 'slingshot' into an orbit that would take it far above the plane of the ecliptic. Once Ulysses was in its scheduled orbit, it began observing the solar wind and magnetic field strength at high solar latitudes, finding that the solar wind from high latitudes was moving at about 750 km/s, which was slower than expected, and that there were large magnetic waves emerging from high latitudes that scattered galactic.Elemental abundances in the photosphere are well known from studies, but the composition of the interior of the Sun is more poorly understood. A sample return mission, was designed to allow astronomers to directly measure the composition of solar material.The (STEREO) mission was launched in October 2006.
Two identical spacecraft were launched into orbits that cause them to (respectively) pull further ahead of and fall gradually behind Earth. This enables imaging of the Sun and solar phenomena, such as.The was launched in 2018 aboard a rocket and will reach a perigee of 0.046 in 2025, making it the closest-orbiting manmade satellite as the first spacecraft to fly low into the.The has scheduled the launch of a 100 kg satellite named for mid 2020.
Its main instrument will be a for studying the dynamics of the solar corona. Observation and effects.
The Sun, as seen from low Earth orbit overlooking the. This sunlight is not filtered by the lower atmosphere, which blocks much of the solar spectrum.The brightness of the Sun can cause pain from looking at it with the; however, doing so for brief periods is not hazardous for normal non-dilated eyes. Looking directly at the Sun causes visual artifacts and temporary partial blindness. It also delivers about 4 milliwatts of sunlight to the retina, slightly heating it and potentially causing damage in eyes that cannot respond properly to the brightness. Exposure gradually yellows the lens of the eye over a period of years, and is thought to contribute to the formation of, but this depends on general exposure to solar UV, and not whether one looks directly at the Sun. Long-duration viewing of the direct Sun with the naked eye can begin to cause UV-induced, sunburn-like lesions on the retina after about 100 seconds, particularly under conditions where the UV light from the Sun is intense and well focused; conditions are worsened by young eyes or new lens implants (which admit more UV than aging natural eyes), Sun angles near the zenith, and observing locations at high altitude.Viewing the Sun through light-concentrating such as may result in permanent damage to the retina without an appropriate filter that blocks UV and substantially dims the sunlight. When using an attenuating filter to view the Sun, the viewer is cautioned to use a filter specifically designed for that use.
Some improvised filters that pass UV or rays, can actually harm the eye at high brightness levels., also called Solar Diagonals, are effective and inexpensive for small telescopes. The sunlight that is destined for the eyepiece is reflected from an unsilvered surface of a piece of glass.
Only a very small fraction of the incident light is reflected. The rest passes through the glass and leaves the instrument.
If the glass breaks because of the heat, no light at all is reflected, making the device fail-safe. Simple filters made of darkened glass allow the full intensity of sunlight to pass through if they break, endangering the observer's eyesight. Unfiltered binoculars can deliver hundreds of times as much energy as using the naked eye, possibly causing immediate damage. It is claimed that even brief glances at the midday Sun through an unfiltered telescope can cause permanent damage. WithPartial are hazardous to view because the eye's is not adapted to the unusually high visual contrast: the pupil dilates according to the total amount of light in the field of view, not by the brightest object in the field. During partial eclipses most sunlight is blocked by the passing in front of the Sun, but the uncovered parts of the photosphere have the same as during a normal day. In the overall gloom, the pupil expands from 2 mm to 6 mm, and each retinal cell exposed to the solar image receives up to ten times more light than it would looking at the non-eclipsed Sun.
This can damage or kill those cells, resulting in small permanent blind spots for the viewer. The hazard is insidious for inexperienced observers and for children, because there is no perception of pain: it is not immediately obvious that one's vision is being destroyed. A sunset in Thailand in summerDuring and, sunlight is attenuated because of and from a particularly long passage through Earth's atmosphere, and the Sun is sometimes faint enough to be viewed comfortably with the naked eye or safely with optics (provided there is no risk of bright sunlight suddenly appearing through a break between clouds).
Hazy conditions, atmospheric dust, and high humidity contribute to this atmospheric attenuation.An, known as a, can sometimes be seen shortly after sunset or before sunrise. The flash is caused by light from the Sun just below the horizon being (usually through a ) towards the observer. Light of shorter wavelengths (violet, blue, green) is bent more than that of longer wavelengths (yellow, orange, red) but the violet and blue light is more, leaving light that is perceived as green.light from the Sun has properties and can be used to sanitize tools and water. It also causes, and has other biological effects such as the production of.
It is also the main cause of. Ultraviolet light is strongly attenuated by Earth's, so that the amount of UV varies greatly with and has been partially responsible for many biological adaptations, including variations in in different regions of the Earth. Planetary system. Main article:Solar deities play a major role in many world religions and mythologies. The ancient believed that the sun was, the god of justice and twin brother of, the, who was identified as the planet. Later, Utu was identified with the god.
Utu was regarded as a helper-deity, who aided those in distress, and, in, he is usually portrayed with a long beard and clutching a, which represented his role as the dispenser of justice.From at least the of, the Sun was worshipped as the, portrayed as a falcon-headed divinity surmounted by the solar disk, and surrounded by a serpent. In the period, the Sun became identified with the, whose spherical ball of dung was identified with the Sun. In the form of the sun disc, the Sun had a brief resurgence during the when it again became the preeminent, if not only, divinity for the.In, the Sun was personified as the goddess. Derivatives of this goddess in include the, and Solntse.
In, the sun deity was the male god, but traces of an earlier female solar deity are preserved in. In later times, Helios was with.In the, mentions the 'Sun of Righteousness' (sometimes translated as the 'Sun of Justice'), which some have interpreted as a reference to the. In ancient Roman culture, was the day of the sun god. It was adopted as the day by Christians who did not have a Jewish background. The symbol of light was a pagan device adopted by Christians, and perhaps the most important one that did not come from Jewish traditions. In paganism, the Sun was a source of life, giving warmth and illumination to mankind.
It was the center of a popular cult among Romans, who would stand at dawn to catch the first rays of sunshine as they prayed. The celebration of the (which influenced Christmas) was part of the Roman cult of the unconquered Sun. Christian churches were built with an orientation so that the congregation faced toward the sunrise in the East., the god of the sun, was usually depicted holding arrows and a shield and was closely associated with the practice of.
The sun goddess is the most important deity in the religion, and she is believed to be the direct ancestor of all. ^ All numbers in this article are short scale.
One billion is 10 9, or 1,000,000,000. In, the term heavy elements (or metals) refers to all except hydrogen and helium. live so deep under the sea that they have no access to sunlight. Bacteria instead use sulfur compounds as an energy source, via. 1.88 Gcd/m 2 is calculated from the solar illuminance of 128 000 lux (see ) times the square of the distance to the center of the Sun, divided by the cross sectional area of the Sun.
1.44 Gcd/m 2 is calculated using 98 000 lux. A 50 kg adult human has a volume of about 0.05 m 3, which corresponds to 13.8 watts, at the volumetric power of the solar center. This is 285 kcal/day, about 10% of the actual average caloric intake and output for humans in non-stressful conditions. Earth's atmosphere near sea level has a particle density of about 2 ×10 25 m −3.References.